Minggu, 05 Juli 2009

VIRTUAL MEMORY di Windows Dan Linux

 Virtual Memory
Di Windows
Pada komputer kita, jumlah memory yang tersedia adalah jumlah antara memory fisik/RAM dengan virtual memory. Virtual memory adalah sebuah porsi pada hard disk yang di-set menyerupai RAM oleh system. Virtual memory merupakan ruang penyimpanan sementara yang digunakan untuk menjalankan program yang membutuhkan memory yang lebih besar dari memory fisik.
Virtual memory berupa file yang bernama pagefile.sys yang di-set hidden oleh Windows. File ini disebut paging file, yang digunakan untuk menampung program dan data yang tidak cukup di memory fisik. Virtual memory lebih lambat daripada memory fisik, dan penggunaan yang terlalu banyak dapat menurunkan kinerja sistem. Sehubungan dengan itu, windows memindahkan proses yang tidak terlalu sering ke virtual memory, dan membiarkan proses yang sering digunakan di memory fisik. Jadi ini sangat efisien.
Ukuran dari virtual memory dapat kita rubah, Windows merekomendasikan ukuran minimal dari vitual memory adalah 1.5 kali dari memory fisik kita.
Jika anda memiliki beberapa harddisk, misal hardisk pertama adalah C: dan harddisk kedua adalah D: dan anda jarang menggunakan drive D:, anda dapat memindahkan virtual memory ke drive D:. Memindahkan virtual memory ke harddisk yang jarang digunakan akan sedikit meningkatkan performa. Alasannya adalah, pada harddisk pertama biasanya head dari harddisk sangat sibuk untuk membuka program, dokumen, menyimpan file dan masih banyak lagi. Tetapi ingat, cara ini tidak akan berguna bila drivenya terletak pada harddisk yang sama atau dengan kata lain sebuah partisi.
Cara Kerja
Virtual Memory digunakan dengan membuat suatu file khusus yang disebut swapfile atau paging file. Virtual memory digunakan pada saat operating system kehabisan memory, dimana o.s. akan memindahkan data yang paling terakhir diakses ke dalam swapfile di hardisk. Hal ini mengosongkan/ membebaskan beberapa ruang kosong pada memory untuk aplikasi yang akan digunakan selanjutnya. Operating system akan melakukan hal ini secara terus menerus ketika data baru diisi pada ram.
Kemudian, pada saat data yang tersimpan di swapfile diperlukan, data tersebut ditukar (swap) dengan data yang paling terakhir dipakai di dalam memory (ram). Hal ini mengakibatkan swapfile bersifat seperti ram, walaupun program tidak dapat secara langsung dijalankan dari swapfile. Satu hal yang perlu dicatat bahwa karena operating system tidak dapat secara langsung menjalankan program dari swapfile, beberapa program mungkin tidak akan berjalan walau dengan swapfile yang besar jika kita hanya memiliki ram yang kecil.
 Virtual Memory
Di Linux
Managemen Memori di Linux
A. Managemen Memori Fisik
Bagian ini menjelaskan bagaimana linux menangani memori dalam sistem. Memori managemen merupakan salah satu bagian terpenting dalam sistem operasi. Karena adanya keterbatasan memori, diperlukan suatu strategi dalam menangani masalah ini. Jalan keluarnya adalah dengan menggunakan memori virtual. Dengan memori virtual, memori tampak lebih besar daripada ukuran yang sebenarnya.
Dengan memori virtual kita dapat:
1. Ruang alamat yang besar
Sistem operasi membuat memori terlihat lebih besar daripada ukuran memori sebenarnya. Memori virtual bisa beberapa kali lebih besar daripada memori fisiknya.
2. Pembagian memori fisik yang adil
Managemen memori membuat pembagian yang adil dalam pengalokasian memori antara proses-proses.
3. Perlindungan
Memori managemen menjamin setiap proses dalam sistem terlindung dari proses-proses lainnya. Dengan demikian, program yang crash tidak akan mempengaruhi proses lain dalam sistem tersebut.
4. Penggunaan memori virtual bersama
Memori virtual mengizinkan dua buah proses berbagi memori diantara keduanya, contohnya dalam shared library. Kode library dapat berada di satu tempat, dan tidak dikopi pada dua program yang berbeda.
Memori Virtual
Memori fisik dan memori virtual dibagi menjadi bagian-bagian yang disebut page. Page ini memiliki ukuran yang sama besar. Tiap page ini punya nomor yang unik, yaitu Page Frame Number (PFN). Untuk setiap instruksi dalam program, CPU melakukan mapping dari alamat virtual ke memori fisik yang sebenarnya.
Penerjemahan alamat di antara virtual dan memori fisik dilakukan oleh CPU menggunakan tabel page untuk proses x dan proses y. Ini menunjukkan virtial PFN 0 dari proses x dimap ke memori fisik PFN 1. Setiap anggota tabel page mengandung informasi berikut ini:
1. Virtual PFN
2. PFN fisik
3. informasi akses page dari page tersebut
Untuk menerjemahkan alamat virtual ke alamat fisik, pertama-tama CPU harus menangani alamat virtual PFN dan offsetnya di virtual page. CPU mencari tabel page proses dan mancari anggota yang sesuai degan virtual PFN. Ini memberikan PFN fisik yang dicari. CPU kemudian mengambil PFN fisik dan mengalikannya dengan besar page untuk mendapat alamat basis page tersebut di dalam memori fisik. Terakhir, CPU menambahkan offset ke instruksi atau data yang dibutuhkan. Dengan cara ini, memori virtual dapat dimap ke page fisik dengan urutan yang teracak.
Demand Paging
Cara untuk menghemat memori fisik adalah dengan hanya meload page virtual yang sedang digunakan oleh program yang sedang dieksekusi. Tehnik dimana hanya meload page virtual ke memori hanya ketika program dijalankan disebut demand paging.
Ketika proses mencoba mengakses alamat virtual yang tidak ada di dalam memori, CPU tidak dapat menemukan anggota tabel page. Contohnya, dalam gambar, tidak ada anggota tabel page untuk proses x untuk virtual PFN 2 dan jika proses x ingin membaca alamat dari virtual PFN 2, CPU tidak dapat menterjemahkan alamat ke alamat fisik. Saat ini CPU bergantung pada sistem operasi untuk menangani masalah ini. CPU menginformasikan kepada sistem operasi bahwa page fault telah terjadi, dan sistem operasi membuat proses menunggu selama sistem operasi menagani masalah ini.
CPU harus membawa page yang benar ke memori dari image di disk. Akses disk membutuhkan waktu yang sangat lama dan proses harus menunggu sampai page selesai diambil. Jika ada proses lain yang dapat dijalankan, maka sistem operai akan memilihnya untuk kemudian dijalankan. Page yang diambil kemudian dituliskan di dalam page fisik yang masih kosong dan anggota dari virtual PFN ditambahkan dalam tabel page proses. Proses kemudian dimulai lagi pada tempat dimana page fault terjadi. Saat ini terjadi pengaksesan memori virtual, CPU membuat penerjemahan dan kemudian proses dijalankan kembali.
Demand paging terjadi saat sistem sedang sibuk atau saat image pertama kali diload ke memori. Mekanisme ini berarti sebuah proses dapat mengeksekusi image dimana hanya sebagian dari image tersebut terdapat dalam memori fisik.
Swaping
Jika memori fisik tiba-tiba habis dan proses ingin memindahkan sebuah page ke memori, sistem operasi harus memutuskan apa yang harus dilakukan. Sistem operasi harus adil dalam mambagi page fisik dalam sistem diantara proses yang ada, bisa juga sistem operasi menghapus satu atau lebih page dari memori untuk membuat ruang untuk page baru yang dibawa ke memori. Cara page virtual dipilih dari memori fisik berpengaruh pada efisiensi sistem.
Linux menggunakan tehnik page aging agar adil dalam memilih page yang akan dihapus dari sistem. Ini berarti setiap page memiliki usia sesuai dengan berapa sering page itu diakses. Semakin sering sebuah page diakses, semakin muda page tersebut. Page yang tua adalah kandidat untuk diswap.
Pengaksesan Memori Virtual Bersama
Memori virtual mempermudah proses untuk berbagi memori saat semua akses ke memori menggunakan tabel page. Proses yang akan berbagi memori virtual yang sama, page fisik yang sama direference oleh banyak proses. Tabel page untuk setiap proses mengandung anggota page table yang mempunyai PFN fisik yang sama.
Efisiensi
Desainer dari CPU dan sistem operasi berusaha meningkatkan kinerja dari sistem. Disamping membuat prosesor, memori semakin cepat, jalan terbaik adalah manggunakan cache. Berikut ini adalah beberapa cache dalam managemen memori di linux:


1. Page Cache
Digunakan untuk meningkatkan akses ke image dan data dalam disk. Saat dibaca dari disk, page dicache di page cache. Jika page ini tidak dibutuhkan lagi pada suatu saat, tetapi dibutuhkan lagi pada saat yang lain, page ini dapat segera diambil dari page cache.
2. Buffer Cache
Page mungkin mengandung buffer data yang sedang digunakan oleh kernel, device driver dan lain-lain. Buffer cache tampak seperti daftar buffer. Contohnya, device driver membutuhkan buffer 256 bytes, adalah lebih cepat untuk mengambil buffer dari buffer cache daripada mengalokasikan page fisik lalu kemudian memecahnya menjadi 256 bytes buffer-buffer.
3. Swap Cache
Hanya page yang telah ditulis ditempatkan dalam swap file. Selama page ini tidak mengalami perubahan setelah ditulis ke dalam swap file, maka saat berikutnya page di swap out tidak perlu menuliskan kembali jika page telah ada di swap file. Di sistem yang sering mengalami swap, ini dapat menghemat akses disk yang tidak perlu.
Salah satu implementasi yang umum dari hardware cache adalah di CPU, cache dari anggota tabel page. Dalam hal ini, CPU tidak secara langsung membaca tabel page, tetap mencache terjemahan page yang dibutuhkan.
Load dan Eksekusi Program
1. Penempatan program dalam memori
Linux membuat tabel-tabel fungsi untuk loading program, memberikan kesempatan kepada setiap fungsi untuk meload file yang diberikan saat sistem call exec dijalankan. Pertama-tama file binari dari page ditempatkan pada memori virtual. Hanya pada saat program mencoba mengakses page yang telah diberikan terjadi page fault, maka page akan diload ke memori fisik.
2. Linking statis dan linking dinamis
a. Linking statis:
librari-librari yang digunakan oleh program ditaruh secara langsung dalam file binari yang dapat dieksekusi. Kerugian dari linking statis adalah setiap program harus mengandung kopi library sistem yang umum.
b. Linking dinamis:
hanya sekali meload librari sistem menuju memori. Linking dinamis lebih efisien dalam hal memori fisik dan ruang disk.

Perhitungan Alamat Absolut pada Paging dan Segmentation

Penghitungan Alamat Absolute pada Paging
Alamat referensi pada kode instruksi program adalah alamat pada ruang logika proses sehingga pada saat eksekusi, alamat referensi tersebut haruslah ditranslasi ke alamat fisik memori utama yang sesungguhnya.


Pada gambar diatas merupakan contoh translasi alamat pada system paging. Diasumsikan system memori computer menggunakan pengalamatan 16 bit, 16 bit pertama untuk menunjukkan nomor page,10 bit, terakhir untuk menunjukkan nilai offset, yaitu alamat relative dalam suatu page. Dengan kata lain, tiap page berukuran 20 bit atau 1024 alamat. Misalnya dalam program terdapat kode instruksi jump[1502]. Alamat 1502 dalam kode program adlah alamat logika proses sehingga jika instruksi ini dieksekusi di prosesor maka lamat 1502 harus ditranslasi terlebih dahulu.

Pehitungan Alamat Absolut Pada Segmentasi
Pada sistem segmentasi alamat logika pada kode instruksi program juga perlu ditranslasi pada saat dieksekusi.
Misalnya sistem memori computer menggunakan alamat 16 bit sehingga maksimal kapasitas memori utama adalah 64 kbyte. Bit alamat logika dapat dipecah atas nomor segmen dan alamat offset. Misalnya, nomor segmen menggunakan 4 bit atas alamat logika, yang berarti terdapat maksimal 212=4 kbyte. Misalnya dalam program terdapat instruksi jump[4848]. Pada saat eksekusi, berapakah alamat fisik hasil translasi dari referensi alamat logika 4848 pada instruksi jump tersebut?

Jika direpresentasikan dalam bentuk biner, alamt logika 4848 adalah 000100101111000, yang berarti nomor segmennya adalah 1 (0001) dan alamat offsetnya adalah 752 (001011110000). Dati tabel segmen proses terlihat bahwa segmen 1 dialokasikan pada memori fisik pada alamat awal 8224 sehingga pada saat dieksekusi alamat 4848 akan ditranslasi menjadi 8224 + 752 = 8976.

perbedaan Partition, Segmentation dan Paging

Partisi
Bahasan pertama adalah review sekilas tentang partisi. Hard disk untuk bisa diisi sistem operasi, membutuhkan satu wadah, yang dinamakan partisi. Jika Anda terbiasa menggunakan Microsoft, partisi disimbolkan dengan Drive. Misal, Drive C:(partisi pertama) Drive D:(partisi kedua) dan seterusnya.
Dengan membagi hard disk ke dalam beberapa partisi Anda dapat menjalankan berbagai sistem operasi secara bersamaan. Misalnya Linux - Windows 98 - Windows NT.
Partisi dikategorikan dalam tiga jenis. Primary, Extended dan Logical Partition. Partisi utama, disebut primary, dalam satu hard disk maksimal hanya 4 partisi. Jika Anda ingin lebih dari 4 partisi, maka perlu dibuat extended partition yang bisa memuat logical partition dengan jumlah lebih banyak. Jadi data hanya terletak di partisi primary atau logical, sedangkan extended hanya merupakan wadah dari partisi logical. Contoh pengaturan hard disk dan nama yang biasa dipergunakan di Linux.
Segmentasi
Segmentasi adalah sebuah bagian dari managemen memori yang mengatur pengalamatan dari memori yang terdiri dari segmen-segmen. logical address space adalah kumpulan dari segmen-segmen yang mana tiap-tiap segmen mempunyai nama dan panjang. alamat tersebut menunjukkan alamat dari segmen tersebut dan offset-nya didalam segmen-segmen tersebut. pengguna kemudian menentukan pengalamatan dari setiap segmen menjadi dua bentuk, nama segmen dan offset dari segmen tersebut (Hal ini berbeda dengan pemberian halaman, dimana pengguna hanya menentukan satu buah alamat, dimana pembagian alamat menjadi dua dilakukan oleh perangkat keras, semua ini tidak dapat dilihat oleh user).
Keuntungan lain dari segmentasi adalah menyangkut masalah pembagian penggunaan kode atau data. Setiap proses mempunyai tabel segmennya sendiri, dimana ini akan digunakan oleh dispatcher untuk menentukan tabel segmen dari perangkat keras yang mana akan digunakan ketika proses yang bersangkutan di eksekusi oleh CPU. Segmen akan berbagi ketika anggota dari elemen tabel segmen yang berasal dari dua proses yang berbeda menunjuk ke lokasi fisik yang sama. Pembagian tersebut terjadi pada level segmen, maka, informasi apa pun dapat dibagi jika didefinisikan pada level segmen. Bahkan beberapa segmen pun dapat berbagi, sehingga sebuah program yang terdiri dari beberapa segmen pun dapat saling berbagi pakai.
Paging
Membagi memory ke dalam chunks (bagian-bagian) kecil berukuran tetap dan
sama, dan membagi setiap proses ke dalam chunk berukuran sama tersebut
Chunks dari suatu proses dinamakan pages
Demand Paging atau permintaan pemberian halaman adalah salah satu implementasi dari memori virtual yang paling umum digunakan. Sistem Demand Paging pada prinsipnya hampir sama dengan sistem permintaan halaman yang menggunakan swapping, hanya saja pada sistem demand paging, halaman tidak akan dibawa ke dalam memori fisik sampai ia benar-benar diperlukan. Oleh sebab itu dibutuhkan bantuan perangkat keras untuk mengetahui lokasi dari halaman saat ia diperlukan. Daripada melakukan swapping, keseluruhan proses ke dalam memori utama, digunakanlah yang disebut lazy swapper yaitu tidak pernah menukar sebuah halaman ke dalam memori utama kecuali halaman tersebut diperlukan.

Pengalamatan Logical, Relative dan Physical

Pengalamatan Phyical
Pada meode pengalamatan memori secara fisik,alamat yang ditulis pada kode instruksi program hasil kompilasi merupakan alamat fisik memory utama yang sesungguhnya. Konsekuensinya adalah pada saat penyalinan image proses ke memori utama, maka kode instruksi dan data program harus disalin pada posisi yang sesuai dengan referensi tersebut. Pada saat eksekusi, prosesor akan memproses alamat pada kode instruksi program secara langsung tanpa melakukan translasi alamat memori.
Pengalamatan Relative
Pengalamatan relative terutama digunakan pada sistem yang menggunakan alokasi memori berurut, dimana keseluruhan image proses harus terletak di satu area memori yang utuh.
Alamat pada kode instruksi program merupakan alamat relatif(offset) terhadap posisi awal program. Pada saat image proses dari program tersebut disalin atau dialokasikan ke memori utama, alamat awal memorinya dicatat ke suatu register alokasi. Pada saat eksekusi, pemgaksesan alamatakan ditranslasi dengan menjumlahkan alamat referenai pada instruksi dengan isi registrasi alokasi untuk mendapatkan alamat fisik memori yang akan benar-benar diakses. Umumnya proses translasi ini dilakukan menggunakan perangkat keras khusus yang disebut dengan MMU(Memory Management Unit).
Pengalamatan logical
Pada pengalamatan secara logika, alamat yang ada pada kode program merupakan suatu alamat logika yang masih perlu diterjemahkan atau ditranslasikan kealamat fisik memori utama pada saat eksekusi. Umumnya , translasi almat untuk pengalamatannya secara logika terjadi pada saat eksekusi.
Kelebihan pengalamatan ini adalah relokasi program dapat dilakukan secara fleksibel, bahkan ruang atau kapasitas alamat logika program dapat lebih besar dari kapasitas fisik memori utama. Misalnya program dapat menggunakan ruang alamat logika sebesar 2Giga, sedangkan emori utama fisik di mana program tersebut dijalankan hanya memiliki kapasitas 256 Mega